Exponential stability of nonlinear time - varying differential equations and applications ∗
نویسنده
چکیده
In this paper, we give sufficient conditions for the exponential stability of a class of nonlinear time-varying differential equations. We use the Lyapunov method with functions that are not necessarily differentiable; hence we extend previous results. We also provide an application to exponential stability for nonlinear time-varying control systems.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملNew global exponential stability criteria for nonlinear delay differential systems with applications to BAM neural networks
Keywords: Systems of nonlinear delay differential equations Time-varying delays Global stability M-matrix BAM neural network Leakage delays a b s t r a c t We consider a nonlinear non-autonomous system with time-varying delays
متن کاملSolving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملSlope restrictions and monotonicity in nonlinear systems: almost linear behavior
The problems of absolute stability and existence of forced oscillations for systems with sector restricted nonlinearities are considered. An overview of the results for systems described by ordinary differential equations with constant and periodic coefficients is presented. A result is obtained on exponential absolute stability for systems described by ordinary differential equations. Next, a ...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001